### (Active) structural completeness for small frames

Michał Stronkowski & Mateusz Uliński

Warsaw University of Technology

WARU PRAGUE, May 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

# (active) structural completeness

- L a logic,  $\vdash_L$  its consequence relation of derivability
- r a rule
- $\vdash_L^r$  the least consequence relation containing the rule  $\{r\}\cup\vdash_L$
- r is <u>admissible in</u> L if Theorems $(\vdash_L^r) = L$

 $r=\Gamma/\varphi$  is active in L if there is a substitution  $\sigma$  such that  $\sigma(\Gamma)\subseteq L$ 

*L* is (actively) structurally complete if every (active) admissible in *L* rule is derivable, i.e., is in  $\vdash_L$ 

#### Fact

 $\Gamma / \varphi$  is admissible for  $\vdash$  iff  $(\forall \gamma \in \Gamma, \vdash \sigma(\gamma))$  yields  $\vdash \sigma(\varphi)$  for every substitution  $\sigma$ 

# (quasi)varieties

 $\begin{array}{ll} \underline{\text{identities}} \text{ look like} & (\forall \bar{x}) \; s(\bar{x}) \approx t(\bar{x}) \\ \text{quasi-identities look like} \end{array}$ 

 $(\forall \bar{x}) \ s_1(\bar{x}) \approx t_1(\bar{x}) \land \cdots \land s_n(\bar{x}) \approx t_n(\bar{x}) \rightarrow \ s(\bar{x}) \approx t(\bar{x})$ 

(quasi)varieties = classes of algebras defined by (quasi-)identities

#### Fact

Every (quasi)variety  $\mathcal{V}$  has a free algebra  $\mathbf{F}_{\mathcal{V}}(k)$  of rank k > 0. Let  $\mathbf{F}_{\mathcal{V}} = \mathbf{F}_{\mathcal{V}}(\aleph_0)$ .

### Mal'cev

A class is  $SPP_U$ -closed iff it is a quasivariety.

#### Birkhoff

A class is HSP-closed iff it is a variety.

## admissibility algebraically

| logic <i>L</i>      | $\longleftrightarrow$ |
|---------------------|-----------------------|
| logical connectives | $\longleftrightarrow$ |
| theorems            | $\longleftrightarrow$ |
| derived rules       | $\longleftrightarrow$ |
| admissible rules    | $\longleftrightarrow$ |
| active rules        | $\longleftrightarrow$ |
|                     |                       |

variety  $\mathcal{V}$ basic operations identities valid in  $\mathcal{V}$ quasi-identities valid in  $\mathcal{V}$ quasi-identities valid in  $\mathbf{F}_{\mathcal{V}}$ quasi-identities with the premise satisfiable in  $\mathbf{F}_{\mathcal{V}}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thus we may study admissibility and (A)SC for varieties

# SC vs ASC

### Examples

- S5 and  $L_n$  are ASC but not SC  $(n \ge 3)$  [folklore];
- discriminator varieties are ASC [Burris '92, Dzik '11], and are SC iff they are minimal or trivial (if there are two distinct constants) [Campercholi, S., Vaggione '16];
- ASC normal extensions of S4 are SC iff they extend S4.McKinsey [Dzik and S. '16];
- among 3330 3-element groupoids (up to izo.) 2676 generate SC quasivarieties and 2930 generate ASC quasivarieties [Metcalfe and Röthlisberger '13];
- almost all finite algebras generate SC varieties [Murskii '75].

 To compare ASC and SC for normal modal logics of small frames.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

► to understand (A)SC.

## numerical results: normal extensions of K



| size                  | 1 | 2 | 3  | 4    | 5      | 6        |
|-----------------------|---|---|----|------|--------|----------|
| K                     | 2 | 8 | 86 | 2838 | 285799 | 96420781 |
| D=K⊕⊘⊤                | 1 | 5 | 62 | 2214 | 244134 | 87722854 |
| $T=K\oplus\Box p	o p$ | 1 | 2 | 12 | 189  | 9175   | 1523497  |

## numerical results: normal extensions of K4



| size                              | 1 | 2 | 3  | 4   | 5    | 6    | 7      | 8       |
|-----------------------------------|---|---|----|-----|------|------|--------|---------|
| K4                                | 2 | 6 | 26 | 145 | 1050 | 9917 | 121496 | 1958413 |
| KD4=K4⊕⊘⊤                         | 1 | 3 | 11 | 52  | 315  | 2496 | 26314  | 370304  |
| $S4=K4\oplus\Box p \rightarrow p$ | 1 | 2 | 5  | 15  | 55   | 242  | 1322   | 9160    |

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

How it is computed?

# decidability

### (A)SC-problem for varieties

INPUT: a finite algebra  $\mathbf{A}$ , OUTPUT: YES if HSP( $\mathbf{A}$ ) is (A)SC, NO otherwise.

Theorem (Dywan '78, Bergman '88, Metcalfe & Röthlisberger '13, S.'18)

There are algorithms which solve the (A)SC-problem for varieties when the input is from

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- a congruence meet-semidistributive variety,
- a congruence modular variety.

# decidability

### (A)SC-problem for varieties

INPUT: a finite algebra  $\mathbf{A}$ , OUTPUT: YES if HSP( $\mathbf{A}$ ) is (A)SC, NO otherwise.

Theorem (Dywan '78, Bergman '88, Metcalfe & Röthlisberger '13, S.'18)

There are algorithms which solve the (A)SC-problem for varieties when the input is from

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- a congruence meet-semidistributive variety,
- a congruence modular variety.

### Drawback

These algorithms are very very slow.

# decidability

### (A)SC-problem for varieties

INPUT: a finite algebra  $\mathbf{A}$ , OUTPUT: YES if HSP( $\mathbf{A}$ ) is (A)SC, NO otherwise.

Theorem (Dywan '78, Bergman '88, Metcalfe & Röthlisberger '13, S.'18)

There are algorithms which solve the (A)SC-problem for varieties when the input is from

- a congruence meet-semidistributive variety,
- a congruence modular variety.

### Drawback

These algorithms are very very slow.

### Hope

The algorithm is just very slow in case of congruence distributivity.

# SI algebras

An algebra **A** is subdirectly irreducible if there is a pair  $a, b \in A$  of distinct elements such that every nontrivial congruence of **A** contains (a, b).

#### Fact

An algebra **A** is SI if and only if whenever  $\mathbf{A} \leq \prod \mathbf{A}_i$ , then one of the projections  $\pi_i : \mathbf{A} \to \mathbf{A}_i$  is an embedding.

# SI algebras

An algebra **A** is subdirectly irreducible if there is a pair  $a, b \in A$  of distinct elements such that every nontrivial congruence of **A** contains (a, b).

#### Fact

An algebra **A** is SI if and only if whenever  $\mathbf{A} \leq \prod \mathbf{A}_i$ , then one of the projections  $\pi_i : \mathbf{A} \to \mathbf{A}_i$  is an embedding.

### Theorem (Birkhoff '35)

Every variety  $\mathcal{V}$  is generated as a quasivariety by its SI algebras:

 $\mathcal{V} = \mathsf{SP}(\mathcal{V}_{SI}).$ 

## algorithm algebraically

Theorem (Bergman '88, Metcalfe & Röthlisberger '13, Dzik & S. '16)

Let **A** be a finite *k*-generated algebra,  $\mathcal{V} = \text{HSP}(\mathbf{A})$  have only finite SI algebras, and  $\mathbf{M} \leq \mathbf{F}_{\mathcal{V}}$ . Then

• 
$$\mathcal{V}$$
 is SC iff  $\mathcal{V}_{SI} \subseteq S(\mathbf{F}_{\mathcal{V}}(k))$ ,

▶  $\mathcal{V}$  is ASC iff {**S** × **M** : **S** ∈  $\mathcal{V}_{SI}$ } ⊆ SP(**F**<sub> $\mathcal{V}$ </sub>(*k*)).

### Jónsson's Lemma

Let **A** be a finite algebra and  $\mathcal{V} = \mathsf{HSP}(\mathbf{A})$  be congruence distributive. Then  $\mathcal{V}_{SI} \subseteq \mathsf{HS}(\mathbf{A})$  is not too big.

finite duality, a logarithmic reduction

finite modal algebra A  $HSP(\mathbf{A})$ subalgebras  $\longleftrightarrow$ homomorphic images  $\longleftrightarrow$ products  $\longleftrightarrow$ finite SI algebras  $\longleftrightarrow$ free algebra  $\mathbf{F}(k)$  $\longleftrightarrow$ 

| finite modal frame <b>W</b>     |  |
|---------------------------------|--|
| $L(\mathbf{W})$                 |  |
| p-morphic images                |  |
| generated subframes             |  |
| disjoint union                  |  |
| finite rooted frames            |  |
| universal model $\mathbf{U}(k)$ |  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $|W| = \log_2 |A|, \quad |U(k)| = \log_2 |F(k)|$ 

 $\leftrightarrow \rightarrow$ 

 $\leftrightarrow \rightarrow$ 

# algorithm relationally I

### Corollary

Let **W** be a modal frame and  $L = L(\mathbf{W})$  be its logic. Let k be a smallest number for which there exists a k-valution v such that the model  $(\mathbf{W}, v)$  has only trivial bisimulations. Then

- L is SC iff every rooted gen. subframe of W is a p-morphic image of U(k),
- ▶ *L* is ASC iff  $\mathbf{R} \sqcup \mathbf{U}(0)$  is a p-morphic image of a disjoint union of copies of  $\mathbf{U}(k)$  for every rooted gen. subframe  $\mathbf{R}$  of  $\mathbf{W}$ .

#### Remark

It is still slow:  $k \leq \log_2 |W|$  and just  $|U(k)| \leq |W| \cdot 2^{|W| \cdot \log_2 |W|}$ . so the algorithms works in 2EXPTIME. we do not need to check SC

### Fact (S. & U. '18)

Let **W** be a finite frame and  $L = L(\mathbf{W})$  be its logic. Assume that L is ASC. Then L is SC iff

L is serial (◊1 ∈ L) and every top cluster in W consists of one reflexive point.

or

L = Ver (W has empty accessibility relation).

#### proof

"The same" as for normal extensions of S4. One just need to consider *weak* transitivity and *weak* McKinsey's law.

we do not need to check non-serial frames

### Fact (S. & U. '18)

Let **W** be a finite frame. Then **W** is ASC iff  $\mathbf{W} \cong \mathbf{W}_{ser} \sqcup \mathbf{W}_{ver}$ , where  $\mathbf{W}_{ser} \models \Diamond 1$ ,  $L(\mathbf{W}_{ser})$  is ASC and  $\mathbf{W}_{ver} \models \Box 0$ ,

**Remark**: It works without the finiteness assumption but the (algebraic) proof we have for it is harder.

### proof

By considering the structure of  $\mathbf{U}(k)$  and p-morphisms onto  $\circ \sqcup \mathbf{U}'(0)$ , where  $\mathbf{U}'(0)$  is a gen. subframe of  $\mathbf{U}(0)$ .

# structure of $\mathbf{U}(k)$

Let **W** be an input frame. Let  $Val(k) = (2^W)^{\{p_1,...,p_k\}}$  be the set of all *k*-valuations of **W**. Then **U**(*k*) is the underlying frame of the model

$$\left(\bigsqcup_{w\in Val(k)}(\mathbf{W},w)\right)/\beta,$$

where  $\beta$  is a largest bisimulation

 $(x, y) \in \beta$  iff the same k-formulas are satisfied in x and y.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

## algorithm relationally II

### Corollary

Let **W** be a serial frame and  $L = L(\mathbf{W})$  be its logic. Let k be a smallest number for which there exists a k-valution v such that the model  $(\mathbf{W}, v)$  has only trivial bisimulations. Then

L is ASC iff R or R ⊔ • is a p-morphic image of U(k) for every rooted gen. subframe R of W.

**Remark**: Still quite slow, though enough for 5-element frames.

## basic idea for improvement

Observation (Metcalfe & Röthlisberger '13)

Let  $\mathbf{U}^{p}(k)$  be frame such that

- W embeds as a gen. subframe into  $\mathbf{U}^p(k)$ ,
- $\mathbf{U}^{p}(k)$  is a p-morphic image of  $\mathbf{U}(k)$ .

Then in the algorithm we may replace  $\mathbf{U}(k)$  for  $\mathbf{U}^{p}(k)$ .

### proof

The duals of  $\mathbf{U}(k)$  and  $\mathbf{U}^{\rho}(k)$  generate the same quasivariety.

How to find a small  $\mathbf{U}^{p}(k)$ ?

# structure of $\mathbf{U}^{p}(k)$

Recall that  $\mathbf{U}(k)$  is the underlying frame of the model

$$\left(\bigsqcup_{v\in Val(k)}(\mathbf{W},w)\right)/\beta,$$

where  $\beta$  is a largest bisimulation The frame  $\mathbf{U}^{p}(k)$  is of the form

$$\left(\bigsqcup_{w\in \operatorname{Val}(k)}\mathbf{W}\right)/\gamma,$$

where  $\gamma$  is a frame bisimilar equivalence extending  $\beta$  and not gluing elements from a chosen copy of W.

## optimalization ingredients

- 1. Do not compute  $\mathbf{U}(k)$  at all!
- 2. Search p-morphisms reasonably?
- 3. Use randomness (Las Vegas method)!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## sample reduction

let  $(\mathbf{W}_i, w_i)$ ,  $i \leq N$  be the list of all k-models based on (copies of)  $\mathbf{W}$ 

Put  $(V_0, v_0) = (W_0, w_0)$ , Once defined  $(V_i, v_i)$ : Let, say

$$w_{i+1}'(x) = \begin{cases} w_{i+1}(x) & \text{if } x \text{ is bisimilar to } y \text{ in } (\mathbf{W}_0, w_0) \\ \emptyset & \text{in the oposite case} \end{cases}$$

and take

and

$$\mathbf{V}_{i+1} = (\mathbf{V}_i, v_i) \sqcup (\mathbf{W}_{i+1}, w'_{i+1})/(a \text{ largest bisimulation})$$
  
dafine  $\mathbf{U}^p(k) = \mathbf{V}_N$ .

#### Remarks:

 More optimalizations are used, but this one is the most efficient.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- We incorporate ramdomness here.
- It is sufficient for 6-elements frames

do we really need this algorithm?

▶ Find an easy to check condition suffitient for ¬ASC!

Find an easy to check condition sufficient for ASC!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# condition for $\neg ASC$

Let  $\mathbf{R} \sqsubseteq \mathbf{S}$  iff there is a surjective p-morphism  $\mathbf{S} \to \mathbf{R}$ . Let  $\mathcal{M}(\mathbf{W})$  be the set of generated rooted subframes of  $\mathbf{W}$  which are maximal w.r.t.  $\sqsubseteq$ .

```
Fact (S. & U. '19)
```

If some  $\mathbf{R} \in \mathcal{M}(\mathbf{W})$  is a proper gen. subframe of a rooted gen. subframe of  $\mathbf{W}$ , then  $L(\mathbf{W})$  is not ASC.

### proof

Similar as we deal with non-serial frames.

#### Remarks:

- It is easy to be check.
- ▶ It covers around 99% of ¬ASC frames we checked.

# condition for ASC

### Observation (Dzik '11)

If L admits a projective unification, then L is ASC.

### Corollary

If the transitive closure of the accessibility relation of W is symmetric, then L(W) is ASC.

### proof

The corresponding variery is discriminator. By Burris' result, it admits projective unification.

### Theorem (Dzik & Wojtylak '12, Kost '18)

There is a simple characterization of transitive frames which logics admits projective unification.

## The end

This is all

Thank you!

