(Active) structural completeness for small frames

Michał Stronkowski \& Mateusz Uliński

Warsaw University of Technology

WARU
PRAGUE, May 2019

(active) structural completeness

L - a logic, \vdash_{L} - its consequence relation of derivability
r - a rule
\vdash_{L}^{r} - the least consequence relation containing the rule $\{r\} \cup \vdash_{L}$
r is admissible in L if $\operatorname{Theorems}\left(\vdash_{L}^{r}\right)=L$
$r=\Gamma / \varphi$ is active in L if there is a substitution σ such that
$\sigma(\Gamma) \subseteq L$
L is (actively) structurally complete if every (active) admissible in L rule is derivable, i.e., is in \vdash_{L}

Fact
Γ / φ is admissible for \vdash iff $\quad(\forall \gamma \in \Gamma, \vdash \sigma(\gamma))$ yields $\quad \vdash \sigma(\varphi)$ for every substitution σ

(quasi)varieties

identities look like $(\forall \bar{x}) s(\bar{x}) \approx t(\bar{x})$
quasi-identities look like
$(\forall \bar{x}) s_{1}(\bar{x}) \approx t_{1}(\bar{x}) \wedge \cdots \wedge s_{n}(\bar{x}) \approx t_{n}(\bar{x}) \rightarrow s(\bar{x}) \approx t(\bar{x})$
$\underline{(q u a s i) \text { varieties }}=$ classes of algebras defined by (quasi-)identities

Fact
Every (quasi)variety \mathcal{V} has a free algebra $\mathbf{F}_{\mathcal{V}}(k)$ of rank $k>0$. Let $\mathbf{F}_{\mathcal{V}}=\mathbf{F}_{\mathcal{V}}\left(\aleph_{0}\right)$.

Mal'cev
A class is $\mathrm{SPP}_{\mathrm{U}}$-closed iff it is a quasivariety.
Birkhoff
A class is HSP-closed iff it is a variety.

admissibility algebraically

logic L	tha	variety \mathcal{V}
logical connectives	tha	basic operations
theorems	4ns	identities valid in \mathcal{V}
derived rules	uns	quasi-identities valid in \mathcal{V}
admissible rules	tus	quasi-identities valid in $\mathbf{F}_{\mathcal{V}}$
active rules	ms	quasi-identities with
		the premise satisfiable in $\mathbf{F}_{\mathcal{V}}$

Thus we may study admissibility and (A)SC for varieties

SC vs ASC

Examples

- S5 and $Ł_{n}$ are ASC but not SC $(n \geqslant 3)$ [folklore];
- discriminator varieties are ASC [Burris '92, Dzik '11], and are SC iff they are minimal or trivial (if there are two distinct constants) [Campercholi, S., Vaggione '16];
- ASC normal extensions of S4 are SC iff they extend S4.McKinsey [Dzik and S. '16];
- among 3330 3-element groupoids (up to izo.) 2676 generate SC quasivarieties and 2930 generate ASC quasivarieties [Metcalfe and Röthlisberger '13];
- almost all finite algebras generate SC varieties [Murskií '75].

aim

- To compare ASC and SC for normal modal logics of small frames.
- to understand (A)SC.

numerical results: normal extensions of K

ASC

size	1	2	3	4	5	6
K	2	8	86	2838	285799	96420781
$\mathrm{D}=\mathrm{K} \oplus \diamond \top$	1	5	62	2214	244134	87722854
$\mathrm{~T}=\mathrm{K} \oplus \square p \rightarrow p$	1	2	12	189	9175	1523497

numerical results: normal extensions of K 4

size	1	2	3	4	5	6	7	8
K 4	2	6	26	145	1050	9917	121496	1958413
$\mathrm{KD} 4=\mathrm{K} 4 \oplus \diamond \top$	1	3	11	52	315	2496	26314	370304
$\mathrm{~S} 4=\mathrm{K} 4 \oplus \square p \rightarrow p$	1	2	5	15	55	242	1322	9160

How it is computed?

decidability

(A)SC-problem for varieties

INPUT: a finite algebra A,
OUTPUT: YES if $\operatorname{HSP}(\mathbf{A})$ is (A)SC, NO otherwise.
Theorem (Dywan '78, Bergman '88, Metcalfe \& Röthlisberger '13, S.'18)
There are algorithms which solve the (A)SC-problem for varieties when the input is from

- a congruence meet-semidistributive variety,
- a congruence modular variety.

decidability

(A)SC-problem for varieties

INPUT: a finite algebra A,
OUTPUT: YES if $\operatorname{HSP}(\mathbf{A})$ is (A)SC, NO otherwise.
Theorem (Dywan '78, Bergman '88, Metcalfe \& Röthlisberger '13, S.'18)
There are algorithms which solve the (A)SC-problem for varieties when the input is from

- a congruence meet-semidistributive variety,
- a congruence modular variety.

Drawback
These algorithms are very very slow.

decidability

(A)SC-problem for varieties

INPUT: a finite algebra A,
OUTPUT: YES if $\operatorname{HSP}(\mathbf{A})$ is (A)SC, NO otherwise.
Theorem (Dywan '78, Bergman '88, Metcalfe \& Röthlisberger '13, S.'18)
There are algorithms which solve the (A)SC-problem for varieties when the input is from

- a congruence meet-semidistributive variety,
- a congruence modular variety.

Drawback

These algorithms are very very slow.
Hope
The algorithm is just very slow in case of congruence distributivity.

SI algebras

An algebra \mathbf{A} is subdirectly irreducible if there is a pair $a, b \in A$ of distinct elements such that every nontrivial congruence of \mathbf{A} contains (a, b).

Fact

An algebra \mathbf{A} is SI if and only if whenever $\mathbf{A} \leqslant \prod \mathbf{A}_{i}$, then one of the projections $\pi_{i}: \mathbf{A} \rightarrow \mathbf{A}_{i}$ is an embedding.

SI algebras

An algebra \mathbf{A} is subdirectly irreducible if there is a pair $a, b \in A$ of distinct elements such that every nontrivial congruence of \mathbf{A} contains (a, b).

Fact

An algebra \mathbf{A} is SI if and only if whenever $\mathbf{A} \leqslant \prod \mathbf{A}_{i}$, then one of the projections $\pi_{i}: \mathbf{A} \rightarrow \mathbf{A}_{i}$ is an embedding.

Theorem (Birkhoff '35)
Every variety \mathcal{V} is generated as a quasivariety by its SI algebras:

$$
\mathcal{V}=\operatorname{SP}\left(\mathcal{V}_{S I}\right)
$$

algorithm algebraically

Theorem (Bergman '88, Metcalfe \& Röthlisberger '13, Dzik \& S. '16)

Let \mathbf{A} be a finite k-generated algebra, $\mathcal{V}=\operatorname{HSP}(\mathbf{A})$ have only finite SI algebras, and $\mathbf{M} \leqslant \mathbf{F}_{\mathcal{V}}$. Then

- \mathcal{V} is $S C$ iff $\mathcal{V}_{S I} \subseteq S\left(\mathbf{F}_{\mathcal{V}}(k)\right)$,
- \mathcal{V} is ASC iff $\left\{\mathbf{S} \times \mathbf{M}: \mathbf{S} \in \mathcal{V}_{S I}\right\} \subseteq \operatorname{SP}\left(\mathbf{F}_{\mathcal{V}}(k)\right)$.

Jónsson's Lemma
Let \mathbf{A} be a finite algebra and $\mathcal{V}=\operatorname{HSP}(\mathbf{A})$ be congruence distributive. Then $\mathcal{V}_{S I} \subseteq \mathrm{HS}(\mathbf{A})$ is not too big.

finite duality, a logarithmic reduction

finite modal algebra \mathbf{A} $\operatorname{HSP}(\mathbf{A})$	tus	finite modal frame $L(\mathbf{W})$
subalgebras	tha	p-morphic images
homomorphic images	thas	generated subframes
products	tus	disjoint union
finite SI algebras	thas	finite rooted frames
free algebra $\mathbf{F}(k)$	n	universal model $\mathbf{U}(k)$

$$
|W|=\log _{2}|A|, \quad|U(k)|=\log _{2}|F(k)|
$$

algorithm relationally I

Corollary

Let \mathbf{W} be a modal frame and $L=L(\mathbf{W})$ be its logic. Let k be a smallest number for which there exists a k-valution v such that the model (\mathbf{W}, v) has only trivial bisimulations. Then

- L is SC iff every rooted gen. subframe of \mathbf{W} is a p-morphic image of $\mathbf{U}(k)$,
- L is ASC iff $\mathbf{R} \sqcup \mathbf{U}(0)$ is a p-morphic image of a disjoint union of copies of $\mathbf{U}(k)$ for every rooted gen. subframe \mathbf{R} of \mathbf{W}.

Remark

It is still slow: $k \leqslant \log _{2}|W|$ and just $|U(k)| \leqslant|W| \cdot 2^{|W| \cdot \log _{2}|W|}$. so the algorithms works in 2EXPTIME.

we do not need to check SC

Fact (S. \& U. '18)
Let \mathbf{W} be a finite frame and $L=L(\mathbf{W})$ be its logic. Assume that L is ASC. Then L is SC iff

- L is serial $(\diamond 1 \in L)$ and every top cluster in \mathbf{W} consists of one reflexive point.
or
- $L=\operatorname{Ver}(\mathbf{W}$ has empty accessibility relation).
proof
"The same" as for normal extensions of S4. One just need to consider weak transitivity and weak McKinsey's law.

we do not need to check non-serial frames

Fact (S. \& U. '18)
Let \mathbf{W} be a finite frame. Then \mathbf{W} is ASC iff $\mathbf{W} \cong \mathbf{W}_{\text {ser }} \sqcup \mathbf{\mathbf { W } _ { \text { ver } }}$, where $\mathbf{W}_{\text {ser }} \models \diamond 1, L\left(\mathbf{W}_{\text {ser }}\right)$ is ASC and $\mathbf{W}_{\text {ver }} \models \square 0$,

Remark: It works without the finiteness assumption but the (algebraic) proof we have for it is harder.
proof
By considering the structure of $\mathbf{U}(k)$ and p -morphisms onto

- $\sqcup \mathbf{U}^{\prime}(0)$, where $\mathbf{U}^{\prime}(0)$ is a gen. subframe of $\mathbf{U}(0)$.

structure of $\mathbf{U}(k)$

Let \mathbf{W} be an input frame.
Let $\operatorname{Val}(k)=\left(2^{W}\right)^{\left\{p_{1}, \ldots, p_{k}\right\}}$ be the set of all k-valuations of \mathbf{W}. Then $\mathbf{U}(k)$ is the underlying frame of the model

$$
\left(\bigsqcup_{w \in \operatorname{Val}(k)}(\mathbf{W}, w)\right) / \beta
$$

where β is a largest bisimulation

$$
(x, y) \in \beta \quad \text { iff } \quad \text { the same } k \text {-formulas are satisfied in } x \text { and } y .
$$

algorithm relationally II

Corollary

Let \mathbf{W} be a serial frame and $L=L(\mathbf{W})$ be its logic. Let k be a smallest number for which there exists a k-valution v such that the model (\mathbf{W}, v) has only trivial bisimulations. Then

- L is ASC iff \mathbf{R} or $\mathbf{R} \sqcup \bullet$ is a p-morphic image of $\mathbf{U}(k)$ for every rooted gen. subframe \mathbf{R} of \mathbf{W}.

Remark: Still quite slow, though enough for 5-element frames.

basic idea for improvement

Observation (Metcalfe \& Röthlisberger '13)
Let $\mathbf{U}^{p}(k)$ be frame such that

- W embeds as a gen. subframe into $\mathbf{U}^{p}(k)$,
- $\mathbf{U}^{p}(k)$ is a p-morphic image of $\mathbf{U}(k)$.

Then in the algorithm we may replace $\mathbf{U}(k)$ for $\mathbf{U}^{p}(k)$.
proof
The duals of $\mathbf{U}(k)$ and $\mathbf{U}^{p}(k)$ generate the same quasivariety.

How to find a small $\mathbf{U}^{p}(k)$?

structure of $\mathbf{U}^{p}(k)$

Recall that $\mathbf{U}(k)$ is the underlying frame of the model

$$
\left(\bigsqcup_{v \in \operatorname{Val}(k)}(\mathbf{W}, w)\right) / \beta
$$

where β is a largest bisimulation
The frame $\mathbf{U}^{p}(k)$ is of the form

$$
\left(\bigsqcup_{w \in \operatorname{Val}(k)} \mathbf{w}\right) / \gamma,
$$

where γ is a frame bisimilar equivalence extending β and not gluing elements from a chosen copy of W.

optimalization ingredients

1. Do not compute $\mathbf{U}(k)$ at all!
2. Search p-morphisms reasonably?
3. Use randomness (Las Vegas method)!

sample reduction

let $\left(\mathbf{W}_{i}, w_{i}\right), i \leqslant N$ be the list of all k-models based on (copies of) W

Put $\left(\mathbf{V}_{\mathbf{0}}, v_{0}\right)=\left(\mathbf{W}_{\mathbf{0}}, w_{0}\right)$,
Once defined $\left(\mathbf{V}_{i}, v_{i}\right)$: Let, say

$$
w_{i+1}^{\prime}(x)= \begin{cases}w_{i+1}(x) & \text { if } x \text { is bisimilar to } y \text { in }\left(\mathbf{W}_{0}, w_{0}\right) \\ \emptyset & \text { in the oposite case }\end{cases}
$$

and take

$$
\mathbf{V}_{i+1}=\left(\mathbf{V}_{i}, v_{i}\right) \sqcup\left(\mathbf{W}_{i+1}, w_{i+1}^{\prime}\right) /(\text { a largest bisimulation })
$$

and dafine $\mathbf{U}^{p}(k)=\mathbf{V}_{N}$.

Remarks:

- More optimalizations are used, but this one is the most efficient.
- We incorporate ramdomness here.
- It is sufficient for 6-elements frames

do we really need this algorithm?

- Find an easy to check condition suffitient for \neg ASC!
- Find an easy to check condition suffitient for ASC!

condition for $\neg \mathrm{ASC}$

Let $\mathbf{R} \sqsubseteq \mathbf{S}$ iff there is a surjective p-morphism $\mathbf{S} \rightarrow \mathbf{R}$. Let $\mathcal{M}(\mathbf{W})$ be the set of generated rooted subframes of \mathbf{W} which are maximal w.r.t. \sqsubseteq.

Fact (S. \& U. '19)
If some $\mathbf{R} \in \mathcal{M}(\mathbf{W})$ is a proper gen. subframe of a rooted gen. subframe of \mathbf{W}, then $L(\overline{\mathbf{W}})$ is not ASC.
proof
Similar as we deal with non-serial frames.

Remarks:

- It is easy to be check.
- It covers around 99% of \neg ASC frames we checked.

condition for ASC

Observation (Dzik '11)
If L admits a projective unification, then L is ASC.
Corollary
If the transitive closure of the accessibility relation of \mathbf{W} is symmetric, then $L(\mathbf{W})$ is ASC.
proof
The corresponding variery is discriminator. By Burris' result, it admits projective unification.

Theorem (Dzik \& Wojtylak '12, Kost '18)
There is a simple characterization of transitive frames which logics admits projective unification.

The end

This is all
Thank you!

