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(active) structural completeness

L - a logic, ⊢L - its consequence relation of derivability
r - a rule
⊢r
L - the least consequence relation containing the rule {r}∪ ⊢L

r is admissible in L if Theorems(⊢r
L) = L

r = Γ/φ is active in L if there is a substitution σ such that
σ(Γ) ⊆ L

L is (actively) structurally complete if every (active) admissible in
L rule is derivable, i.e., is in ⊢L

Fact
Γ/φ is admissible for ⊢ iff (∀γ ∈ Γ, ⊢ σ(γ) ) yields ⊢ σ(φ)
for every substitution σ



(quasi)varieties

identities look like (∀x̄) s(x̄) ≈ t(x̄)
quasi-identities look like

(∀x̄) s1(x̄) ≈ t1(x̄) ∧ · · · ∧ sn(x̄) ≈ tn(x̄) → s(x̄) ≈ t(x̄)

(quasi)varieties = classes of algebras defined by (quasi-)identities

Fact
Every (quasi)variety V has a free algebra FV(k) of rank k > 0.
Let FV = FV(ℵ0).

Mal’cev
A class is SPPU-closed iff it is a quasivariety.

Birkhoff
A class is HSP-closed iff it is a variety.



admissibility algebraically

logic L ↭ variety V
logical connectives ↭ basic operations

theorems ↭ identities valid in V
derived rules ↭ quasi-identities valid in V

admissible rules ↭ quasi-identities valid in FV
active rules ↭ quasi-identities with

the premise satisfiable in FV

Thus we may study admissibility and (A)SC for varieties



SC vs ASC

Examples

▶ S5 and  Ln are ASC but not SC (n ⩾ 3) [folklore];

▶ discriminator varieties are ASC [Burris ’92, Dzik ’11], and are
SC iff they are minimal or trivial (if there are two distinct
constants) [Campercholi, S., Vaggione ’16];

▶ ASC normal extensions of S4 are SC iff they extend
S4.McKinsey [Dzik and S. ’16];

▶ among 3330 3-element groupoids (up to izo.) 2676 generate
SC quasivarieties and 2930 generate ASC quasivarieties
[Metcalfe and Röthlisberger ’13];

▶ almost all finite algebras generate SC varieties [Murskĭi ’75].



aim

▶ To compare ASC and SC for normal modal logics of small
frames.

▶ to understand (A)SC.



numerical results: normal extensions of K
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size 1 2 3 4 5 6

K 2 8 86 2838 285799 96420781

D=K⊕♢⊤ 1 5 62 2214 244134 87722854

T=K⊕□p → p 1 2 12 189 9175 1523497



numerical results: normal extensions of K4
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size 1 2 3 4 5 6 7 8

K4 2 6 26 145 1050 9917 121496 1958413

KD4=K4⊕♢⊤ 1 3 11 52 315 2496 26314 370304

S4=K4⊕□p → p 1 2 5 15 55 242 1322 9160



How it is computed?



decidability

(A)SC-problem for varieties

INPUT: a finite algebra A,
OUTPUT: YES if HSP(A) is (A)SC, NO otherwise.

Theorem (Dywan ’78, Bergman ’88, Metcalfe & Röthlisberger
’13, S.’18)

There are algorithms which solve the (A)SC-problem for varieties
when the input is from

▶ a congruence meet-semidistributive variety,

▶ a congruence modular variety.

Drawback
These algorithms are very very slow.

Hope

The algorithm is just very slow in case of congruence distributivity.
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SI algebras

An algebra A is subdirectly irreducible if there is a pair a, b ∈ A of
distinct elements such that every nontrivial congruence of A
contains (a, b).

Fact
An algebra A is SI if and only if whenever A ⩽

∏
Ai , then one of

the projections πi : A → Ai is an embedding.

Theorem (Birkhoff ’35)

Every variety V is generated as a quasivariety by its SI algebras:

V = SP(VSI ).
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algorithm algebraically

Theorem (Bergman ’88, Metcalfe & Röthlisberger ’13, Dzik &
S. ’16)

Let A be a finite k-generated algebra, V = HSP(A) have only
finite SI algebras, and M ⩽ FV . Then

▶ V is SC iff VSI ⊆ S(FV(k)),

▶ V is ASC iff {S×M : S ∈ VSI} ⊆ SP(FV(k)).

Jónsson’s Lemma
Let A be a finite algebra and V = HSP(A) be congruence
distributive. Then VSI ⊆ HS(A) is not too big.



finite duality, a logarithmic reduction

finite modal algebra A ↭ finite modal frame W
HSP(A) ↭ L(W)

subalgebras ↭ p-morphic images
homomorphic images ↭ generated subframes

products ↭ disjoint union
finite SI algebras ↭ finite rooted frames
free algebra F(k) ↭ universal model U(k)

|W | = log2 |A|, |U(k)| = log2 |F (k)|



algorithm relationally I

Corollary

Let W be a modal frame and L = L(W) be its logic. Let k be a
smallest number for which there exists a k-valution v such that the
model (W, v) has only trivial bisimulations. Then

▶ L is SC iff every rooted gen. subframe of W is a p-morphic
image of U(k),

▶ L is ASC iff R ⊔U(0) is a p-morphic image of a disjoint union
of copies of U(k) for every rooted gen. subframe R of W.

Remark
It is still slow: k ⩽ log2 |W | and just |U(k)| ⩽ |W | · 2|W |·log2 |W |.
so the algorithms works in 2EXPTIME.



we do not need to check SC

Fact (S. & U. ’18)

Let W be a finite frame and L = L(W) be its logic. Assume that L
is ASC. Then L is SC iff

▶ L is serial (♢1 ∈ L) and every top cluster in W consists of one
reflexive point.

or

▶ L = Ver (W has empty accessibility relation).

proof

”The same” as for normal extensions of S4. One just need to
consider weak transitivity and weak McKinsey’s law.



we do not need to check non-serial frames

Fact (S. & U. ’18)

Let W be a finite frame. Then W is ASC iff W ∼= Wser ⊔Wver ,
where Wser |= ♢1, L(Wser ) is ASC and Wver |= □0,

Remark: It works without the finiteness assumption but the
(algebraic) proof we have for it is harder.

proof

By considering the structure of U(k) and p-morphisms onto
◦ ⊔U′(0), where U′(0) is a gen. subframe of U(0).



structure of U(k)

Let W be an input frame.
Let Val(k) = (2W ){p1,...,pk} be the set of all k-valuations of W.
Then U(k) is the underlying frame of the model ⊔

w∈Val(k)

(W,w)

 /β,

where β is a largest bisimulation

(x , y) ∈ β iff the same k-formulas are satisfied in x and y .



algorithm relationally II

Corollary

Let W be a serial frame and L = L(W) be its logic. Let k be a
smallest number for which there exists a k-valution v such that the
model (W, v) has only trivial bisimulations. Then

▶ L is ASC iff R or R⊔ • is a p-morphic image of U(k) for every
rooted gen. subframe R of W.

Remark: Still quite slow, though enough for 5-element frames.



basic idea for improvement

Observation (Metcalfe & Röthlisberger ’13)

Let Up(k) be frame such that

▶ W embeds as a gen. subframe into Up(k),

▶ Up(k) is a p-morphic image of U(k).

Then in the algorithm we may replace U(k) for Up(k).

proof

The duals of U(k) and Up(k) generate the same quasivariety.

How to find a small Up(k)?



structure of Up(k)

Recall that U(k) is the underlying frame of the model ⊔
v∈Val(k)

(W,w)

 /β,

where β is a largest bisimulation
The frame Up(k) is of the form ⊔

w∈Val(k)

W

 /γ,

where γ is a frame bisimilar equivalence extending β and not
gluing elements from a chosen copy of W .



optimalization ingredients

1. Do not compute U(k) at all!

2. Search p-morphisms reasonably?

3. Use randomness (Las Vegas method)!



sample reduction
let (Wi ,wi ), i ⩽ N be the list of all k-models based on (copies of)
W

Put (V0, v0) = (W0,w0),
Once defined (Vi , vi ): Let, say

w ′
i+1(x) =

{
wi+1(x) if x is bisimilar to y in (W0,w0)

∅ in the oposite case

and take

Vi+1 = (Vi , vi ) ⊔ (Wi+1,w
′
i+1)/(a largest bisimulation)

and dafine Up(k) = VN .

Remarks:
▶ More optimalizations are used, but this one is the most

efficient.
▶ We incorporate ramdomness here.
▶ It is sufficient for 6-elements frames



do we really need this algorithm?

▶ Find an easy to check condition suffitient for ¬ASC!

▶ Find an easy to check condition suffitient for ASC!



condition for ¬ASC

Let R ⊑ S iff there is a surjective p-morphism S → R. Let M(W)
be the set of generated rooted subframes of W which are maximal
w.r.t. ⊑.

Fact (S. & U. ’19)

If some R ∈ M(W) is a proper gen. subframe of a rooted gen.
subframe of W, then L(W) is not ASC.

proof

Similar as we deal with non-serial frames.

Remarks:

▶ It is easy to be check.

▶ It covers around 99% of ¬ASC frames we checked.



condition for ASC

Observation (Dzik ’11)

If L admits a projective unification, then L is ASC.

Corollary

If the transitive closure of the accessibility relation of W is
symmetric, then L(W) is ASC.

proof

The corresponding variery is discriminator. By Burris’ result, it
admits projective unification.

Theorem (Dzik & Wojtylak ’12, Kost ’18)

There is a simple characterization of transitive frames which logics
admits projective unification.



The end

This is all Thank you!


